Астрономія

1. Небесні координати. Сонячний газ.

2. Сонце - найближча зоря.

3. Планети - гіганти.

4. Місяць - планети земної групи. Зорі. Еволюція зір.

5. Наша галактика, або світ галактик.

6. Еволюція всесвіту. Життя у всесвіті.

1. Небесні координати. Сонячний газ

Системи небесних координат використовують в астрономії для опису положення світил на небі або точок на уявній небесній сфері. Координати світил або точок задаються двома кутовими величинами (або дугами), які однозначно визначають положення об'єктів на небесній сфері. Таким чином, системи небесних координат є сферичними системами координат, в яких третя координата — відстань — часто невідома і не грає ролі. Ці системи відрізняються одна від одної вибором основної площини та початком відліку.

В залежності від поставленої задачі, може бути більш зручним використовувати ту чи іншу систему. Найчастіше використовуваними є наступні системи:

Горизонтальна система координат - використовується для визначення напрямку на світило за допомогою кутомірних інструментів і при спостереженнях в телескоп, змонтований на азимутальній установці.

Перша екваторіальна система координат - використовується для визначення точного часу та при спостереженнях в телескоп, змонтований на екваторіальній установці.

Друга екваторіальна система координат - є загальноприйнятою в астрометрії. В цій системі складаються зоряні карти та описуються положення світил в каталогах.

Екліптична система координат - використовується в теоретичній астрономії при визначенні орбіт небесних тіл.

Небесні координати використовувались вже в глибокій древності. Опис деяких систем міститься в трудах давньогрецького мислителя Евкліда (біля 300 до н. е.). Опублікований в «Альмагесті» Птолемея зоряний каталог Гіппарха містить положення 1022 зірок в екліптичній системі небесних координат.

Спостереження змін небесних координат привели до найвизначніших відкриттів астрономії, які мають величезне значення для пізнання Всесвіту. До них відносяться явища прецесії, нутації, аберації, паралаксу, власних рухів зірок та інші. Небесні координати дозволяють вирішувати задачу вимірювання часу, визначати географічні координати різних місць земної поверхні. Широке використання знаходять небесні координати при складанні різних зоряних каталогів, при вивченні істинних рухів небесних тіл — як природних, так і штучних — в небесній механіці та астродинаміці і при вивченні просторового розподілу зірок в проблемах зоряної астрономії.

Сонячна атмосфера також складається з декількох шарів. Зовнішня оболонка типова для зір з водневою сферою, з атомним відношенням водню до гелію, близьким до 10. Найглибший і найтонший із шарів — фотосфера — безпосередньо спостерігається у видимому безперервному спектрі. Це найбільш яскрава оболонка. Товщина фотосфери складає близько 300 км (менше 0,001 сонячного радіуса). Чим глибші шари фотосфери, тим вони гарячіші. У зовнішніх холодніших шарах фотосфери на фоні безперервного спектра утворюються Фраунгоферові лінії поглинання. За допомогою великого телескопа можна спостерігати характерну зернисту структуру фотосфери, що називається грануляцією і вказує на сильний турбулентний рух газів поблизу поверхні й на циркуляцію газів до глибин у десятки тисяч кілометрів. Виникнення грануляції пов'язане з конвекцією, що відбувається під фотосферою. Такий рух газу в сонячній атмосфері породжують акустичні хвилі. Поширюючись у верхні шари атмосфери, хвилі, що виникли в конвективній зоні й у фотосфері, передають їм частину механічної енергії конвективних рухів і здійснюють нагрівання газів наступних шарів атмосфери — хромосфери й корони. Хромосфера менш яскрава (на 16%), ніж фотосфера. Верхні шари атмосфери з температурою близько 4500 К є «найхолоднішими» на Сонці. Тут температура газів швидко зростає як усередину, так і вгору. Шар хромосфери добре помітний під час повного сонячного затемнення як рожеве кільце, що вибивається через темний диск Місяця.

Список використаної літератури

Александров Ю. Небесна механіка: Підруч. для студ. ун-тів, які навч. за спец. "Астрономія" / Харківський національний ун-т ім. В.Н.Каразіна. — Х. : ХНУ, 2004. — 236с.

Астрономія / І. Гончаренко (авт.-упоряд.). — Х. : ВАТ "Харківська книжкова ф-ка ім. М.В.Фрунзе", 2005. — 48 с.

2. Сонце - найближча зоря

Сонце — найближча до Землі зоря. Воно є центральним тілом Сонячної системи і являє собою розпечену плазмову кулю. Світло від цієї зорі доходить до нас за 8,3 хв.

Маса Сонця в 333 000 разів більша за масу Землі й у 750 разів більша за масу всіх разом узятих планет Сонячної системи. За 5 мільярдів років існування Сонця вже близько половини водню в його центральній частині перетворилося на гелій. У результаті цього процесу виділяється та кількість енергії, яку Сонце випромінює у світовий простір.

Потужність випромінювання Сонця дуже велика, але на Землю потрапляє незначна частина його енергії, що складає близько половини мільярдної частки Сонячна енергія підтримує в газоподібному стані земну атмосферу, підтримує постійну температуру, забезпечує життєдіяльність тварин і рослин, дає енергію природним явищам тощо. Частина сонячної енергії запасена в надрах Землі у вигляді кам'яного вугілля, нафти й інших корисних копалин.

Видимий із Землі діаметр Сонця ледь змінюються через еліптичність орбіти й у середньому складає 1 392 тис. км, що в 109 разів перевищує діаметр Землі. Відстань до Сонця в 107 разів перевищує його діаметр. Сонце являє собою сферично симетричне тіло, що знаходиться в рівновазі. Усюди на однакових відстанях від центру цієї кулі фізичні умови однакові, але вони помітно змінюються з наближенням до центру. Густина і тиск швидко наростають усередину, де газ сильніше стиснутий тиском горішніх шарів. Отже, температура зростає в міру наближення до центру.

Уся сонячна атмосфера знаходиться в постійному коливанні. У ній присутні як вертикальні, так і горизонтальні хвилі, довжина яких сягає декількох тисяч кілометрів. Коливання мають резонансний характер. У виникненні явищ, що відбуваються на Сонці, велику роль відіграють магнітні поля. Магнітні поля змінюються відповідно до 11-річного циклу сонячної активності. Енергія повільно дифундує до зовнішніх шарів завдяки атомному поглинанню і випромінюванню, а в зовнішній конвективній зоні, що складає 30% радіуса Сонця і 1% його маси, вихори газу, що піднімаються й опускаються, переносять енергію до фотосфери, із якої відбувається її випромінювання, що супроводжується значною втратою сонячної маси.

Радіовипромінювання Сонця має дві складові: постійну й змінну. Під час сильних сонячних спалахів радіовипромінювання Сонця зростає в тисячі, іноді в мільйони разів у порівнянні з радіовипромінюванням спокійного Сонця. Відомо, що Сонце є джерелом постійного потоку часток — корпускул. Корпускулярне випромінювання складають нейтрино, електрони, протони, альфа-частинки, а також важчі атомні ядра Сонця. Окремі згустки гарячого іонізованого газу «вистрілюють» з областей, що оточують сонячні плями, і рухаються від Сонця зі швидкістю в кілька сотень і навіть тисяч кілометрів на секунду.

Із сонячними спалахами пов'язані найпотужніші короткочасні потоки часток, переважно електронів і протонів. У результаті найпотужніших спалахів частки можуть набувати швидкості, що складає помітну частку швидкості світла. Частки з такими великими енергіями називаються сонячними космічними променями. Сонячне корпускулярне випромінювання впливає на Землю, і, насамперед, на її верхні шари атмосфери й магнітне поле, викликаючи безліч різноманітних геофізичних явищ.

Як і всі зорі, Сонце — розжарена газова куля. В основному воно складається з водню з домішками 10 % (за кількістю атомів) гелію. Кількість атомів усіх разом узятих інших елементів приблизно в 1000 раз менша. Однак маса цих важчих елементів становить 1 — 2 % маси Сонця.

На Сонці речовина дуже іонізована, тобто атоми втратили свої зовнішні електрони й разом з ними стали вільними частинками іонізованого газу — плазми.

Середня густина сонячної речовини g » 1400 кг/м3. Це значення сумірне з густиною води і в тисячу раз більше від густини повітря біля поверхні Землі. Однак у зовнішніх шарах Сонця густина в мільйони разів менша, а в центрі — у 100 раз більша, ніж середня густина.

Під дією сил гравітаційного притягання, спрямованих до центра Сонця, в його надрах створюється величезний тиск.

Список використаної літератури

Бойко Г. Зоряна та позагалактична астрономія: лабораторний практикум / Національний педагогічний ун-т ім. М.П.Драгоманова. — К. : НПУ, 2006. — 118с.

Климишин І. Астрономія: Підруч. для 11 кл. загальноосвітніх навч. закл.. — К. : Знання України, 2004. — 191с.


3. Планети - гіганти

З чотирьох гігантських планет найкраще вивчено Юпітер — найбільшу планету цієї групи і найближчу з них до нас і Сонця. Вісь обертання Юпітера майже перпендикулярна до площини його орбіти, тому сезонних змін умов освітлення на ньому немає.

У всіх планет-гігантів обертання навколо осі досить швидке, а густина мала. Внаслідок цього вони значно стиснуті.

Усі планети-гіганти оточені потужними, великих розмірів атмосферам